

Electrification of transportation: Overview of the latest technical and market developments in e-mobility in North America and beyond

Bruno Lequesne Consultant, E-Motors Consulting, LLC bruno.lequesne@ieee.org www.emotorseng.com

CWIEME October 1, 2014

Who I am

- Electrical engineer, motors and electromagnetic expert, with 30 years of experience for automotive and transportation applications
 - GM Research, Delphi Research, Delphi Powertrain, Eaton
 - Worked on valvetrain electrification, power steering, electric brakes, throttle control, sensors, starter-generators and hybrid systems, etc.
 - 50 patents, number of publications in IEEE and SAE journals and conferences
- Now a consultant

Overview

- Introduction: Why automobile electrification?
- The less visible groundswell: The "not hybrid" story
 - Chassis and powertrain electrification
- The visible part: Hybrids and electric vehicles
- Impact on electric machine technology
- Market perspective and challenges ahead

Automotive electrification: Motivations

- Long history on gas-powered vehicles:
 - Starter motor (1911)
 - Radio (1950's)
 - Currently, some 30 motors per car
 - Mostly simple, low cost brushtype
- Motivation is very diverse:
 - Energy efficiency is only one factor
 - Reduced emissions
 - Smaller engine size with hybrids
 - Convenience and features:
 - Many gadgets require power or actuators
 - Performance
 - Image

Kettering demonstrating starter on a Buick (1913)

Source: ohiohistorycentral.org

- Key enablers:
 - Power electronics
 - Computer and controls

Overview

- Introduction: Why automobile electrification?
- The less visible groundswell: The "not hybrid" story
 - Chassis and powertrain electrification
- The visible part: Hybrids and electric vehicles
- Impact on electric machine technology
- Market perspective and challenges ahead

Chassis electrification

- Chassis: Trilogy of steering, brake, suspension -> Vehicle handling
- All 3 can be electrified
 - Power steering: For fuel economy
 - Suspension: For variable suspension rates
 - Brakes: To eliminate brake fluids, and improve response time
 - All 3 for improved controllability

Electric power steering (EPS)

Motivation:

- Fuel economy, power on demand
- Hydraulic power steering requires the pump to be on all the time, a 1 mile/gallon penalty

History:

- Introduced on Susuki (1988), small Fiat car in 1999
- Becoming standard on passenger vehicles

Issues:

- Torque ripple (can be felt by driver)
- Need for fail safe features
- Cost:
 - Need for EPS to be almost on par with hydraulics

Denso EPS system Source: globaldensoproducts.com

Electric power steering: Low torque ripple

- Approach:
 - Synchronous PM motor have no torque ripple
 - There are known ways to eliminate cogging
 - Slot/pole combinations
 - Skew
 - Phantom slots

- When theory meets practice:
 - Manufacturing variations are critical!
 - Magnet magnetization pattern
 - Eccentricity
 - Required:
 - In-depth detailed understanding of impact of all variations on torque
 - Proper design: Six Sigma, Taguchi methods
 - Proper manufacturing

Cogging torque vs.

magnet misplacement

Islam, et. al. (Delphi/Nexteer) T. Indus. Appl., 2004

Source: Nexteer.com

Variable-rate suspensions

- Issues:
 - Conventional suspension have a fixed damping rate versus frequency
 - Accommodate various comfort levels: Plush versus sporty
- Solution #1:
 - Magnetorheological fluids: Oil filled with iron particles
 - Oil viscosity varies with applied magnetic field
 - Developed by GM/Delphi/Lord
 - Used on luxury vehicles: Cadillac, Corvette, Lexus, Ferrari
- Development hurdle:
 - Proper material with low sedimentation rate
- Limitation:
 - Only semi-active damping

Source: Wikipedia commons

Source: formula1-dictionary.net

Active suspension systems

- Linear motors (Bose, etc)
- Motor with ballscrew-ballnut (GM)
- Advantages:
 - 100% controllable ride

Consulting, LLC

Very minor energy harvesting

Linear motor (Bose) Motor

Source: Hao, et. al, (GM) IEEE ECCE Conf. 2011

Powertrain electrification

• Engines are no more mechanical...

Electric water and oil pumps (BMW, Alfa-Romeo)

10/01/2014, Slide 11

Engine controller (Delphi)

Electric cam phaser (Delphi)

Starter-generator (Denso)

Throttle-by-wire

- Gas pedal system:
 - Linked to throttle by electric wires
 - Mechanical linkage disappeared 15 years ago
- Advantage:
 - Can manage input from driver AND steering, braking, etc (ABS system)
 - Less wear
- What about safety?
 - Toyota recall (2009)...
 - Electronic systems safer than mechanical systems
 - Redundancy

Consulting, LLC

- Sensors as fault observers
- Fewer components, less wear
- Not subject to human failures
- Contributes to ABS and other safety functions

Fuel injectors – Faster, more precise

- Fuel injectors are just solenoids, right?
 - Fuel injectors led the development of FEA in linear motion (1980s)
 - Fuel injectors use piezo technology in mass production
- Why?
 - Move from carburetor to port to in-cylinder injection
 - Fuel dispersion and atomization key to clean burn
 - Precision and repeatability critical
 - Trend towards for multi injections per cycle

Source: howstuffworks.com

Fuel injectors – Electromagnetic versus piezo

- Piezo injectors making in-roads despite of cost, size, need for high voltage
 - May be as long as 8"
 - Need for high voltage supply
 - Stack may be immersed in pressurized fuel

Superchargers and turbochargers

- Engine downsizing by intake air pressurization
 - Significant fuel economy
 - Turbocharging: Powered by exhaust gas
 - Supercharging: Mechanical or electric actuation

Source: goapr.com

- Example: Electric turbo compounding
 - Exhaust gas drives turbine to compress air
 - Electric motor mounted coaxially:
 - Drives system when exhaust pressure is low
 - Can generate power when plenty of exhaust pressure

Source: mts.com

Stop-start systems

- Stop-start = Engine off at idle
 - Can save up to 4% in fuel
- Two types:
 - Regular system with stronger starter motor
 - Belt-driven combined starter-generator

Source: green.autoblog.com

Source: Chen, Lequesne, Henry (Delphi), IEMDC 2001

Induction starter-generator

Source: AC Delco Training (archives online)

Stop-start systems or micro hybrid?

- Stop-start systems are also called micro hybrids
 - Depends on marketing strategy
 - GM calls it "eAssist" Does not want to scare off traditional customers
 - Others taunt environmental friendliness (Peugeot's "ecologique")
 - Stop-start becoming standard, starting with Europe

🛞 BUICK		SHOP BUICK Build Offers Locate	
	a second		

FUEL EFFICIENCY WITHOUT SACRIFICE: EASSIST TECHNOLOGY

Imagine an engine that maximizes fuel efficiency without sacrificing its robust power, a drivetrain that actually turns off to save fuel while at a stoplight and restarts seamlessly, a hybrid system that charges from the normally wasted energy produced when the brakes are applied, and a car that does all this without sacrificing its performance or luxury.

Source: Buick.com

Overview

- Introduction: Why automobile electrification?
- The less visible groundswell: The "not hybrid" story
 - Chassis and powertrain electrification
- The visible part: Hybrids and electric vehicles
- Impact on electric machine technology
- Market perspective and challenges ahead

Performance of electrics/hybrid

- Performance of electric/hybrid cars is excellent On par with traditional
- Some cars (Lexus, Acura for instance) are hybridized for performance, not fuel economy

Tesla:

Source: Teslamotors.com

248 hp (185 kW) motor 0–60 in 3.9 s Lotus Elise:

163 kW supercharged engine 6-speed transmission 0-60 in 4.3 s

10/01/2014, Slide 19

CWIEME

Hybrids: Performance advantage

- Electric motor and engine *complement* one another
 - Electric motors have strong torque at zero speed
 - Engine cannot start on their own, and require a transmission

CWIEME

Propulsion systems

Electric vehicles and plug-in hybrids: Electric engine Electric system needs to meet most traction torque/speed points Hybrids: Electric system simply aids the engine Electric transmission Better defined as an electrified transmission? Planetary gear Which is more complex? Generator Lexus 8-gear transmission Source: Wikipedia Commons **Toyota Prius**

Motor

Propulsion and hybrid motors: Load cycle

• Importance of low-load points on overall efficiency

Propulsion motors: Which motor type?

- Permanent magnet:
 - Favored for hybrid vehicles: Honda, Toyota, GM, Ford
 - Buried magnet design, with more and more reluctance torque
 - Less magnet material, better resistance to demagnetization

Camry 2007

- Induction:
 - Favored for **all-electric** (GM EV1, Tesla)
 - Lower efficiency means range, can be offset with bigger battery
 - And **belt-driven**

What about switched reluctance?

- Used for heavy equipment
 - LeTourneau, all switched reluctance
 - John Deere: PM generator, SR motors
- Noise and vibrations of little concern
- Ruggedness and fault tolerance important

LeTourneau System

1 switched-reluctance generator
4 switched-reluctance wheel motors (300 kW)

Challenge: Cost

- DOE has established ambitious targets for cost and output
 - Requires more than just economies of scale

Electic traction system	2015	2020
Cost (\$/kW)	< 12	< 8
Specific power (kW/kg)	> 1.2	> 1.4
Power density (kW/I)	> 3.5	> 4.0
Efficiency (10-100% speed at 20% tq.)	> 93%	> 94%

Motor	2015	2020
Cost (\$/kW)	< 7.0	< 4.7
Specific power (kW/kg)	> 1.3	> 1.6
Power density (kW/I)	> 5.0	> 5.7

Overview

- Introduction: Why automobile electrification?
- The less visible groundswell: The "not hybrid" story
 - Chassis and powertrain electrification
- The visible part: Hybrids and electric vehicles
- Impact on electric machine technology
- Market perspective and challenges ahead

CWIEME

Impact on motor design: Examples

- Design for consistency:
 - Torque ripple, fuel injectors: Repeatability spec more critical than actual value
 - Taguchi method, design for 6 sigma
- Importance of design for load cycle (compound efficiency map)
- History of the modern generator as example of how to improve old technology competing with the new
- Motor construction and concentrated windings

Automotive generation

- Lundell alternator has reigned for 50 years:
 - Issues: Difficult to scale up, and low efficiency

Lundell improvements

- Permanent magnets in rotor
 - Boosts rotor excitation field
 - Reduces leakage

Radomski (GM), US 4,959,577

• Coil windings for better slot fill

Umeda, et. al. (Denso), US 5,982,068

Lundell improvements

- Active rectifier
 - Lower losses (resistive drop better than diode voltage drop)
 - Control of phase angle

Consulting, LLC

$$P = \frac{3 E V}{X} \sin \theta \quad \stackrel{V}{\underset{\text{B is output voltage}}{\overset{\text{Is output voltage}}{\underset{\text{B is back-emf}}{\overset{\text{Is output voltage}}{\underset{\text{B is angle (V,E)}}{\overset{\text{Is reactance}}{\overset{\text{Is output voltage}}{\overset{\text{Is ou$$

Motor construction

- Emergence of concentrated-coil windings
 - Obvious choice for flywheel-mounted motors
 - Simpler construction, better fill factor
 - Development of segmented stators

Honda Accord (Source ORNL report on motor technologies, 2011)

Honda Insight

Fractional hp motor

(Source movingmagnet.com)

Full integration/modularity

(Brown, Jahns, Lorenz, IAM 2007)

Future needs

- Higher speed motors
 - Needs advances in motor and gear technology
- Thermal / Electromagnetic modeling integration
- Modularity
 - Especially non-automotive, to increase volume
- Higher temperature power electronics (to reduce number of cooling loops) and motor
- Materials:
 - Cast copper rotor (Tesla)
 - Laminations
- Voltage: 48V come back?

Overview

- Introduction: Why automobile electrification?
- The less visible groundswell: The "not hybrid" story
 - Chassis and powertrain electrification
- The visible part: Hybrids and electric vehicles
- Impact on electric machine technology
- Market perspective and challenges ahead

Market penetration

- Electrification is a slow but unrelenting process:
 - Example, electric power steering:
 - Worldwide deployment will skyrocket 72 % to 79M vehicles in 2018 from 46M in 2013 (NSK, 8/2014)
 - True across the board: Automotive, off-road, ships, more-electric aircraft, etc.
- Hybrids and EVs keep knocking at the door
 - Sales increasing steadily, with regular upticks in enthusiasm
 - But have not really reached a tipping point yet

MOTORS Consulting, LLC

Sales of electric (EVs) and hybrid (HEVs) vehicles (US)

• Trend is up, but still a niche market

World view

- Technology penetration world map shows large variations, mirroring incentives and the price of gas
- Gas and electric vehicles have a different economic model
 - Electric: High initial price, low energy cost
 - Gasoline: Opposite

China: Will it drive the technology?

- Very strong government incentives
 - Pollution mitigation
 - Economic independence
 - Leapfrog engine technology, and master the future

Source: chinae-vehicle.com

Source: Fleetsandfuel.com

Where are we going?

• So many contradictory announcements

Harley-Davidson announces its first electric motorcycle, LiveWire

Eaton Discontinues Diesel-Electric Hybrid Trucks

LA Times, June 2014

Truckinfo.com, September 2014

Dollars and cents?

Trends (personal opinion)

- Electrification is real, but a slow process
- Hybridization will happen, but through the back door:
 - Stop-start systems
 - Move to 48V
 - Stop-start systems will "grow up" over time: brake energy recovery, vehicle launch
- Full hybrids and electric will remain niche for a long time
 - EVs face a fundamental problem with battery cost and charging time
 - 1 gal of gasoline is 120 MJ of energy a 3 minute refill is 13 MW rate
 - HEVs have the cost and complexity of two powertrains
- Only China can truly accelerate the trend, if government stays steady

Bruno Lequesne Consultant, E-Motors Consulting, LLC bruno.lequesne@ieee.org www.emotorseng.com

Work in progress!

KOMATSU

komatsu.com.au