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Introduction 

• Most electric machines rotate, but a lot of things move linearly 
 

• In principle, electro-mechanical actuation works whether for linear or 
rotary motion 
 

• Why then do we see mostly rotating machines?  Where is there space 
for linear actuators? 
 

• A lot of diversity in goal, purpose, and design 
• But always application oriented 

 
 

Source:  Teslamotors.com 
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Linear actuation: 
Types of electromagnetic force 

• Sliding 
• Attraction 
• Repulsion 
• Other 
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Sliding force (as in rotating machines) 
• Airgap length constant during travel 
• Typical force pattern in a rotating machine 

 
 
 
 
 
 
 

• Same machine types:  Induction, PM, reluctance, stepper, etc 
• Travel is limited only by size of machine 

 
 
 
 
 
 
 
 
 

  Source:  northeastmaglev.com/the-train 

Primary current 

  Source:  www.tanonyvtar.hu 
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Linear motor with sliding force:  Which is best? 
• Induction, PM, reluctance, stepper, etc 

• Same pros and cons as for rotating machines 
• PM more efficient, reluctance has force ripple, etc 

 

• Construction is different 
• Larger airgaps typical, because of attractive forces (normal to gap) and machine length 
• Attractive stator/translator: 

• Forces cancel out in a rotating machine (if balanced) 
• Dual stators or tubular construction provides similar cancellation in linear machines 

 

 

Source:  Gerada, et. al, IEEE T. IA 2014 
Source:  Jansen, et. al, IEEE T. IA 1995 

Tubular motor Double-sided motor 
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Sliding force:  Long travel 
• Induction favored because of simple secondary 

(as simple as an aluminum rail) 
 

• PM favored because of large airgap capability 
 

• Japan’s SCMaglev uses coils in the track, and 
superconducting magnets on board 

• Clocked at 603 km/h (375 mph) on April 21, 2015 
 

 

Source:  coastergallery.com 

JR–Maglev 

Source:  thehigherlearning.com Source:  science.howstuffworks.com 

Source:  kumbak.nl 

• Roller coasters use 
induction or PM 

 

Coils 
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End effects 
• Linear motor have ends (leading and trailing) which require special consideration 

• Can create drag 

• In fact, machine needs two designs: 
• One for center of machine, one for edges 
• Affects both motor geometry and control (when and how to turn currents on or off) 

• With sinusoidal control, control must use different machine parameters near edge 

  Source:  Li and Pillay, IEEE T. IA 2011 
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Magnetic flux 
at coil edges 

creates 
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Source: 
Stumberger, et. al, IEEE T. IA 2003 
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near the edge? 
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Translator:  Short or long? 
• Acceleration important    Short translator 
• Most force from given input   Long translator 
• Short travel   Focus on leading edge, 

neglect trailing edge 
 

Force creation on  
leading edge 

Long trailing edge 

  Source:  Bianchi, et. al, IEEE T. IA 2003 

Translator length 

Long      

Short    

Moving 
translator 

Moving 
translator 

• Efficiency important     Avoid currents on 
after moving translator is gone 

• Accurate positioning    Avoid detent forces 
and local equilibriums due to forces on edges 
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Attraction force (solenoids)  
• Steel plunger attracted to stationary pole when surrounding coil is excited 

• Return achieved with spring 
• Holding with smaller, DC current  

• Common for motion around 1 to a few mm 
• Control valves for hydraulics, fuel injectors 

 
 

Source:  Lequesne, IEEE T. IA 1990 

Fuel injector (Bosch) 

Source:  bosch-presse.de 
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Attraction force  

Source:  Lequesne, IEEE T. IA 1990 

Secondary 
gap 

Core-to-core leakage 

Airgap leakage 

Plunger 

Main 
gap 

Core-to-core leakage 

Airgape leakage 

Core 

• Principle is based on reluctance variation 
• Force tends to reduce airgap length, increasing inductance 
• Travel is limited to airgap length 
• Force is strongest when airgap is small 

• Force weakest at the beginning of motion (unfortunately) 

• Application to small travels 
• Eddy currents issue for fast travel 

• Solid core  
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Attraction force:  Constant force versus distance  
• Force pattern can be tailored to be constant over distance 

• Balancing magnetic and spring fore makes for simple 
positioning mechanism 

• Obtained with conical plunger 
• Used for fluid flow control 

 

Source:  Lequesne, IEEE T. IA 1988 
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Repulsion force  
• Coil under excitation induces current in a conductive plate, repels it 

• Alternatively, two coils can be excited and repel each other 

• Used for fast actuation 
• Also for suspension (bearingless motors, suspended trains) 

• Force has limited range, but travel can go farther (ballistic motion) 

Source:  C. Peng, et. al., NCSU, unpublished 
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Repulsion force principle 
• Magnetic field trapped in small airgap between excitation coil and plate 

• Motion corresponds to varying inductance 

• Force strongest when airgap is small 
• Force strongest at beginning of motion () but cannot be sustained over long travel 

Source:  Bissal, et. al., IEEE T. Magn, 2012 
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Copper plate 

Colors show 
current 
density 

Axis 

Magnetic 
flux lines 

Airgap 

Radius 

Source:  C. Peng, et. al., NCSU, unpublished 
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Force with permanent magnets 
• Can be attractive or repulsive, depending on coil current 
• Advantages: 

• Two stable positions, without springs or current;  No energy needed outside of motion 
• Repulsion feasible without inducing current, with force highest at beginning of motion 
• Fast travel over larger gaps (10 mm / ½ inch) 

 
 

Source:  Lequesne, IEEE T. IA 1990 
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Other actuation types:  Piezoelectric, ultrasonic 

• Some materials (ceramics) expand when subjected to voltage 
• Motion is very small, but force is very high, time constant is small, and force is very 

repeatable (nanometers at MHz) 
• Ultrasonic motors use similar principles but enhance them with resonance (travelling wave) 
• Applications: 

• Nano, precision positioning 
• Precision metering (fuel injectors):  Motion from a stack of piezo disks is hydraulically amplified 

 

 

Source:  Wikipedia.org 

Fuel injector (Delphi) 
Positioning mechanism 

Source:  MTZ Motortechnische Zeitschrift, 2008 
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Travel length 
• When is travel length “short”? 

• Travel time similar to electrical on time (mm / ms) 

• Examples:   
• Solenoids:  Travel time typically just a bit longer than current pulse 
• Oscillating actuator:  Electrical frequency = Mechanical resonant frequency leads to 

best efficiency (Chen, et. al., 2009) 
 

 Solenoid  

Travel 

Current 

Current on-time 
similar to travel time 

Source:  Lequesne,  
IEEE T. IA 1990 

Oscillating PM actuator 

Magnets 

Coils 

Source:  Chen, et. al.,  
IEEE T. IA 2009 
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Travel length:  Transition from short to medium 
• Transition from short to medium length: 

• When to go from single excitation to commutation, or multi-stage? 

• At some point as magnets move in front of coils, need to reverse polarity 
• Reversing polarity complicate controls:  Switching circuitry, position sensor 

• Strong design incentive to keep system unipolar, with no commutation 
• Larger, fewer poles 
• Limit reached when slot size becomes too large for coil heat dissipation 

 

 
motion 

motion Magnets 

Coils 
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Linear versus rotating + gear, how to choose? 
• Example:  Automotive suspension is a linear motion 

• Electrified suspension makes for active damping control 

• Approach:  Design with a rotating motor and ideal gear 
• Determine appropriate motor diameter and number of rotations 
• If total rotation is similar to linear displacement, or: 

Number of turns x π Diameter < 3 to 5 x Displacement        Linear 
• Equivalent to rotating system:  Assume a gear, if best gear ratio is close to 1, no gear 

• This, plus availability of rotating motors, rotating + gear more common 
 

Source:  Gysen, et. al., IEEE T. IA 2009 

Linear motor (Eindhoven Un.) 

Source:  Hao & Namuduri, IEEE T. IA  2013 

Rotating motor with ballnut/ballscrew (GM) 
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Travel length:  Best approach? 
• Very short (nano- to micro-m):  Piezo very attractive, although actuator is large 

and requires higher voltage 
• Short (mm):  Many options;  Solenoids are inexpensive and very effective at 

lower end of range;  repulsion actuators become effective at higher end of range 
• Medium:  (cm and more):  Most challenging, as using commutation adds cost 

and complexity 
• Long:  Linear motor or rotary-to-linear system 
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Conclusions (1) 

• Even for linear motion, a rotating motor + gear often preferred: 
• Linear motion means motor length is commensurate with travel 
• Linear motor is a motor with “1:1” gear ratio, often not optimum 
• Therefore, except for solenoids (mm range), linear motors are 

application driven, niche designs 
 

• Many linear motor applications are dominated by transients 
• Acceleration, not force, must be optimized 
• Need to match electrical and mechanical transients 

 

• Travel length: 
• Most challenging displacement is in the cm / dm range, when 

transitioning from single pulse to commutation excitation 
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Conclusions (2) 
 

• Construction: 
• Need for careful study of mechanical forces between mover and primary 

• Except for tubular motors where such forces cancel out 
• Larger airgaps are common 

 
• End effects require special attention or separate design 

• Topology and controls to minimize end effects 
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Source:  N. Atkinson, universetoday.com and nasa.gov, 2010 

NASA Considering Rail Gun Launch System to the Stars 

But, the sky is the limit! 



05/2015, Slide 23 
  

Bibliography 
• C. Peng, I. Husain, A. Huang, B. Lequesne, R. Briggs, “Design and Experimental Investigations of a Medium Voltage Ultra-Fast Mechanical Switch for 

Hybrid AC and DC Circuit Breakers”, ECCE Conference, Sept. 2015 (to appear) 
• M. Galea, G. Buticchi, L. Empringham, L. de Lillo, C. Gerada, “Design of a high-force-density tubular motor”, IEEE Trans. Indus. Appl., Vol. 50, No. 4, 

July/Aug. 2014 
• M. Pucci, “State space-vector model of linear induction motors”, IEEE Trans. Indus. Appl., Vol. 50, No. 1, Jan./Feb 2014 
• L. Hao and C. Namuduri, “Electromechanical regenerative actuator with fault-tolerant capability for automotive chassis applications”, IEEE Trans. Ind. 

Appl., vol.49, no. 1, pp. 84-91, Jan./Feb. 2013 
• A. Bissal, J. Magnusson, E. Salinas, G. Engdahl, A. Ericksson, “On the design of ultra-fast electromechanical actuators:  A comprehensive multi-

physical simulation model”, 2012 ICEF Conference 
• X. Chen, Z.Q. Zhu, “Analytical determination of optimal split ratio of E-core permanent-magnet linear actuator”, IEEE Trans. Indus. Appl., Vol. 47, No. 

1, Jan./Feb. 2011 
• H. Li, P. Pillay, “A methodology to design linear generators for energy conversion of ambient vibrations”, IEEE Trans. Indus. Appl., Vol. 47, No. 6, 

Nov./Dec. 2011 
• X. Chen, Z.Q. Zhu, D. Howe, “Modeling and analysis of a tubular oscillating permanent-magnet actuator”, IEEE Trans. Indus. Appl., Vol. 45, No. 6, 

Nov./Dec. 2009 
• B.L.J. Gysen, J.L.G. Janssen, J.J.H. Paulides and E.A. Lomonova, “Design aspects of an active electromagnetic suspension system for automotive 

applications,” IEEE Trans. Ind, Appl., vol. 45, no. 5, pp. 1589-1597, Sep./Oct. 2009 
• D. Schöppe, S. Zülch, M. Hardy, D. Geurts, R.W. Jorach and N. Baker, “Delphi common-rail system with direct acting injector,” MTZ 10, vol. 69, pp. 

32-38, 2008 
• G. Proctor, “Linear actuators get a servo look”, Machine Design, Jan. 25, 2008 
• V. Picron, Y. Postel, E. Nicot, D. Durrieu, “Electro-magnetic valve actuation system: First steps toward mass production,” SAE Paper 2008-01-1360, 

2008. 
• F. Cupertino, D. Naso, E. Mininno, B. Turchiano, “Sliding-mode control with double boundary layer for robust compensation of payload mass and 

friction in linear motors”, IEEE Trans. Indus. Appl., Vol. 45, No. 5, Sep./Oct. 2009 
• J.-Y Lee, J.-P Hong, J.-H. Chang, D.-H. Kang, “Computation of inductance and static thrust of a permanent-magnet-type tranverse flux linear motor”, 

IEEE Trans. Indus. Appl., Vol. 42, No. 2, Mar./Apr. 2006 
 



05/2015, Slide 24 
  

Bibliography (cont’d) 

• G. Stumberger, B. Stumberger, D. Dolinar, “Identification of linear synchronous reluctance motor parameters”, IEEE Trans. Indus. Appl., Vol. 40, 
No. 5, Sep./Oct. 2004 

• M.-S. Kwak, S.-K. Sul, “A new method of partial excitation for dual moving magnet linear synchronous motor”, IEEE Trans. Indus. Appl., Vol. 40, No. 
2, Mar./Apr. 2004 

• H. Polinder, J. Slootweg, M. Hoejmakers, J. Compter, “Modeling of a linear PM machine including magnetic saturation and end effects:  Maximum 
force-to-current ratio”, IEEE Trans. Indus. Appl., Vol. 39, No. 6, Nov./Dec. 2003 

• P.-E. Cavarec, H. Ben Ahmed, B. Multon, “New multi-rod linear actuator for direct-drive, wide mechanical bandpass applications”, IEEE Trans. 
Indus. Appl., Vol. 39, No. 4, July/Aug.. 2003 

• N. Bianchi, S. Bolognani, D. Dalla Corte, F. Tonel, “Tubular linear permanent magnet motors:  An overall comparison”, IEEE Trans. Indus. Appl., 
Vol. 39, No. 4, July/Aug.. 2003 

• R. Ando, M. Koizumi and T. Ishikawa “Development of a simulation method for dynamic characteristics of fuel injector,” IEEE Trans. Magn., vol. 37, 
no. 5, part 1, Sep. 2001 

• U. Deshpande, “2D FEA of a high-force-density linear switched reluctance machine including 3D effects”, IEEE Trans. Indus. Appl., Vol. 36, No. 4, 
July/Aug.. 2000 

• J.R. Brauer and Q.M. Chen, “Alternative dynamic electromechanical models of magnetic actuators containing eddy currents,” IEEE Trans. Magn., 
vol. 36, no. 4, pp. 1333-1336, Jul. 2000 

• M. Piron, P. Sangha, G. Reid, T.J.E. Miller, D.M. Ionel, J.R. Coles, “Rapid computer-aided design method for fast-acting solenoids actuators,”, IEEE 
Trans. Ind. Appl., vol. 35, no. 5, Sep./Oct. 1999 

• B. Lequesne, “Permanent magnet linear motors for short strokes”, IEEE Trans. Indus. Appl., Vol. 32, No. 1, Jan./Feb. 1996 
• P. Jansen, R. Lorenz, “Analysis of competing topologies of linear induction machines for high-speed material transport systems”, IEEE Trans. Indus. 

Appl., Vol. 31, No. 4, July/Aug.1995 
• B. Lequesne, “Fast-acting, long-stroke solenoids with two springs”, IEEE Trans. Indus. Appl., Vol. 26, No. 5, Sept./Oct. 1990 
• B. Lequesne, “Fast-acting, long-stroke bistable solenoids with moving permanent magnets”, IEEE Trans. Indus. Appl., Vol. 26, No. 3, May/June 

1990 
• B. Lequesne, “Dynamic model of solenoids under impact excitation, including motion and eddy currents”, IEEE Trans. Magn.., Vol. 26, No. 3, Mar. 

1990 



05/2015, Slide 25 
  

Bibliography (cont’d) 
• B. Lequesne, “Finite-element analysis of a constant-force solenoid for fluid flow control”, IEEE Trans. Indus. Appl., Vol. 24, No. 4, July/Aug. 1988 
• A.M. Pawlak and T.W. Nehl, “Transient finite element modelling of solenoid actuators: The coupled power electronics, mechanical, and magnetic 

field problem,” IEEE Tran. Magn., vol. 24, no. 1, pp. 270-273, Jan. 1988. 
• D. Atherton, A. Eastham, “Propulsion requirements for high-speed vehicles with electrodynamic suspension”, IEEE Trans. Indus. Appl., Vol. 13, No. 

3, Nov./Dec. 1977 
• M. Iwamoto, E. Ohno, T. Itoh, Y. Shinryo, “End-effect of high speed liner induction motor”, IEEE Trans. Indus. Appl., Vol. 9, No. 6, Nov./Dec. 1973 
• S. Basu, K. Srivasta, “Analysis of a fast acting circuit breaker mechanism;  Part 1:  Electrical aspects”, IEEE Trans. PAS, Vol. 91, No. 3, 1972. 
 
• I. Boldea, S.A. Nasar, Linear Electric Actuators and Generators, (book), Cambridge University Press;  March 28, 1997  


	Slide Number 1
	Introduction
	Linear actuation:�Types of electromagnetic force
	Sliding force (as in rotating machines)
	Linear motor with sliding force:  Which is best?
	Sliding force:  Long travel
	End effects
	Translator:  Short or long?
	Attraction force (solenoids) 
	Attraction force 
	Attraction force:  Constant force versus distance 
	Repulsion force 
	Repulsion force principle
	Force with permanent magnets
	Other actuation types:  Piezoelectric, ultrasonic
	Travel length
	Travel length:  Transition from short to medium
	Linear versus rotating + gear, how to choose?
	Travel length:  Best approach?
	Conclusions (1)
	Conclusions (2)
	But, the sky is the limit!
	Bibliography
	Bibliography (cont’d)
	Bibliography (cont’d)

