

Fuel injector Source: Bosch

Electric power steering Source: Nexteer

Caliper Caliper Brake pads Planetary Brake pads Planetary Rotary-to-linear ballscrewballnut mechanism

Controll

Electric supercharger Source: Valeo

Electric brake Source: Delphi (IEEE IAS Mag, 2009)

Automotive Electrification:

The Non-Hybrid Story

Bruno Lequesne -Consultant, E-Motors Consulting, LLC bruno.lequesne@ieee.org www.emotorseng.com

"Brief message from our sponsors"

IEEE Standard 11-2006(R) for Rotating Electric Machinery for Rail and Road Vehicles

- *Revision needed to include PM motors etc.*
- Working Group just starting its work
- More volunteers welcome
- Working Group chair, Tim Burress (ORNL)
- More standard activity expected
 - Important avenue for IEEE-SAE collaboration
 - ITEC is the ideal meeting point

IEEE Standard 11-200 Electric Machinery fo Vehicles	06(R) for Rotating or Rail and Road
IEEE Power and Energy Society	
Sponsored by the Electric Machinery Committee	
And the IEEE Industry Applications Society	
Sponsored by the Electric Machines Committee	

Introduction

- Hybrids and EVs get a lot of press Well deserved, these are tremendous technical achievements
- There is however a much deeper groundswell of electrification throughout the automobile
 - Basics: Spark-plugs, lights, starter (1900-1915)
 - Radio (1950s)
 - Fuel injection (1960s)
 - Engine controllers (1970s)

Introduction

- Everything is the car is getting electrified
 - Chassis
 - Engine and powertrain
- Degree of electrification paced by speed of cost reduction

Presentation outline

- Chassis
 - Power steering
 - Suspension

- Focus on energy conversion and systems
- Will not cover communications, algorithms, controls
- Engines and powertrain
 - Fuel injectors
 - Valvetrains
 - Throttle control and fuel pump
 - Turbo- and super-chargers
 - Starter-generators as pathway to hybrids

Chassis electrification

Source: BMW

Steering

- Best (recent) success story in automotive electrification
 - Electric power steering becoming standard •
 - Provides power on demand: Significant fuel economy benefit (4%) •
- ssues:
 - Torque ripple
 - Fault tolerance

Consulting, LLC

Steering: Torque ripple

- Torque ripple felt by the driver on the steering wheel
 - Marketing issue (more than technical issue)
- Solution involved <u>all</u> aspects of motor and controller design and manufacturing:
 - Motor:
 - Matching of magnet back-emf with current excitation (magnet shape, etc)
 - Magnet skewing, pole/slot design, etc
 - Controller:
 - Sensor positioning and accuracy
 - Switching frequency, delays
 - Manufacturing:

Consulting, LLC

 Importance of Six Sigma methods to understand impact of build variations on performance

Steering: Fault tolerance

- Mechanical link to wheels kept, just in case
 - Last resort option
- Hardware solutions:
 - Minimize impact of fault (e.g., short circuit current)
 - Redundancy: Enough to be effective, not too much (FMEA)
- Software solutions:
 - Many faults have signatures in the current waveform
 - But, motor is always in dynamic situation
 - Alternatives to Fourier analysis needed
 - Wavelet, Wagnerville, windowed-Fourier...

Source: Rajagopalan, et. al., IEEE T. IA, 2006

Suspension: Background

- Suspension (spring and damper) filter road noise
 - Passenger comfort, body durability
- Adaptive filter better suited (semi-active suspension)
 - Active suspension expands control range, adds car vertical positioning

Source: BMW

Suspension: Magnetorheological fluids

- Magnetorheological fluids: Oil with iron particle in suspension
 - Magnetic field stiffen the oil
- Issues:
 - Material: Develop particles and oil to prevent sedimentation of the iron
 - Magnetics:
 - Optimization for linearity
 - Issue with hysteresis: Iron particle cannot be annealed, leading to large hysteresis

ILCZ

Suspension: Fully active (and electric)

- Electric machine:
 - As a motor, to drive the wheel up/down and position the body
 - As a generator, to absorb energy
- Linear machine (Bose, Un. of Eindhoven)
 - Simpler (no gear)
- Regular brushless machine with ballnut-ballscrew (GM)
 - Possibly smaller, cheaper motor (thanks to gear)
 - Need to compare force/torque per volume, response time, etc

Engine electrification

Source: Bosch

Fuel injection: Background

- Fuel injection has moved closer and closer to combustion
 - Direct injection is increasingly the norm
- Issues: Fast, precise, repeatable motion

Consulting, LLC

• Piezo actuators are great but large and more expensive

Solenoid fuel injectors

- Look simple, but:
 - Requirement of fast and repeatable motion has pushed technology
 - Solid parts (eddy currents)
 - Tiny motion (< fraction of a millimeter)
 - Fuel variety: Fossil, bio, natural gas
 - Recent trend of multiple injections per engine cycle
 - Repeatability means starting from same point No lingering bounces, eddy currents

Consulting, LLC

Source: Rivera and Kirwan, Delphi, 2014

Injectors: Modeling

- Fuel injector has driven modeling tools
 - First motion-compatible FEA models developed for this application
 - FEA solves for magnetic flux density over entire space
 - What matters is travel time, i.e. double integral of force, i.e. square of local flux density in airgap
 - FEA solves for global flux density in space
 - Simpler models: Depth models developed for eddy currents

$$\mathsf{F} = \frac{1}{2\mu_0} \quad B^2 S$$

• Multi-physics to include magnetics, fluid dynamics, and thermal

Multiphysics

Valvetrain: Background

- Valve train bring air into engine, takes burnt gases out
- Conventionally run by a camshaft at half engine speed
 - Valve opening is constant in lift (mm) and span (degrees)
 - Desirable to vary both as function of speed, load, etc

Solution 1: Direct electrical actuation

- Challenges:
 - Long travel (10mm in 3 ms)
 - Energy use
 - Seating velocity
 - Repeatability Worked in experimental cars (FEV, Valeo)

Solved with 2-spring actuation:

Two springs work like a swing controlled by 2 coils

- Durability
- Cost Unresolved

Solution 2: Motor-controlled camshaft

- Motor (DC brushless) controls a mechanism that adjusts the camshaft
 - BMW (Vavetronics), Hitachi
 - Electric cam phaser shifts (phases) camshaft with respect to engine
 - Cam phasers standard now, but generally hydraulic
 - Electrical actuation broadens phase range, prepositions for cold starts
 - System uses harmonic drive (gear) and axial motor (for space)

Consulting, LLC

Source: Jacque, et. al., MTZ Zeitschtrift, 2012 (Delphi)

Turbo- and super-chargers: Background

- Basic concept: Pressurize intake air to expand engine output
- Turbocharger: Uses exhaust pressure to run a turbine
 - Uses waste energy, but suffers from lag
- Supercharger: Direct actuation of pressurizing turbine
 - Mechanical (belt driven): Cheaper, simple, but limited speed not ideal for turbine
 - Electrical

Electric super-chargers

- Can go to very high speed (70 to 150 krpm for 1-2 kW)
 - Good for turbine
 - Can be done with motors, but a first for automotive
 - Issues of cost, controls, motor design from 12V
- First production-ready system (Valeo) uses switched reluctance motor
 - 70 krpm

Source: Valeo

Throttle control and fuel pump

- Throttle controls air intake (acceleration and load)
 - Done "by-wire" for 20-30 years
 - Brushtype motor for low cost

- Fuel pump electric for decades
 - Moving from brushtype to brushless thanks to cost downward trend
 - Note concentrated windings
 - Lower cost

Starter-generator

- Starter motors are used for 30 seconds then "dead weight" during regular driving
- Starting needs high torque at low speed (0 to 200 engine rpm), generation power over a wide engine speed range (800 to 6,000 rpm)
- Combination starting to occur (finally) due to:
 - More and more power demand (specs merging)
 - Idle-off (stop-start) feature (4% fuel economy benefit)
- Belt-driven system offer good packaging
 - PM: Research level
 - Induction: GM eAssist (no magnet, wide speed range)
 - Lundell: Toyota Lexus 2003, GM Saturn Vue 2005 (lowest cost solution)

Hairpin winding

Source: Remy

Lundell motor

Starter-generator: Segway to hybridization

- Starter-generator can also be used for:
 - Transient acceleration support, to shave off some of the engine peak loads
 - Regenerative braking
 - Limited by power rating (braking is a lot of energy in a short time)
- Starter-generator is a micro- or mini-hybrid
 - Growing to "regular" hybrid is a matter of ratings, controls
 - Or, cost/benefit trade-off
- Engine hybridization will therefore appear gradually as costs come down and technology improves
 - Part of gradual electrification of the car systems
 - Not as a "disruptive technology"

Conclusions (1)

- Most automotive sub-systems experiencing some degree of electrification
- Still room to grow:
 - Turbo- and super-chargers
 - Brakes and suspension
- Issues of immediate interest:
 - High speed motors (superchargers)
 - Improved cooling and packaging
 - Motor / power electronics integration
 - SiC
 - Modeling (fuel injectors)
 - Clever electromechanical integration and new materials

Conclusions (2)

- Electrification enabled by computing power, materials, and paced by progress in cost reduction
- Starter-generators as "backdoor" entry to general hybridization
 - Hybridization logical next step of a much deeper and longer historical trend
- Voltage?
 - A lot is possible at 12V
 - 48V will come as "happy medium" between high-voltage hybrids and low-voltage systems

Fuel injector Source: Bosch

Electric power steering Source: Nexteer

Caliper Caliper Brake pads Planetary gear set Rotary-to-linear ballscrewballnut mechanism

Controll

Motor

Electric supercharger Source: Valeo

Thank you!

Bruno Lequesne -Consultant, E-Motors Consulting, LLC bruno.lequesne@ieee.org www.emotorseng.com

Bibliography

- See Lequesne, "Automotive Electrification: The Non-Hybrid Story", IEEE Transactions on Transportation Electrification, 04 May 2015
- And references therein

