Automotive Electrification:
The Non-Hybrid Story

Bruno Lequesne -
Consultant, E-Motors Consulting, LLC
bruno.lequesne@ieee.org
www.emotorseng.com
“Brief message from our sponsors”

IEEE Standard 11-2006(R) for Rotating Electric Machinery for Rail and Road Vehicles

• Revision needed to include PM motors etc.
• Working Group just starting its work
• More volunteers welcome
• Working Group chair, Tim Burress (ORNL)

• More standard activity expected
 • Important avenue for IEEE-SAE collaboration
 • ITEC is the ideal meeting point
Introduction

- Hybrids and EVs get a lot of press – Well deserved, these are tremendous technical achievements

- There is however a much deeper groundswell of electrification throughout the automobile
 - Basics: Spark-plugs, lights, starter (1900-1915)
 - Radio (1950s)
 - Fuel injection (1960s)
 - Engine controllers (1970s)

Source: Conrad, AIEE, 1913
Introduction

• Everything is the car is getting electrified
 • Chassis
 • Engine and powertrain
• Degree of electrification paced by speed of cost reduction

Motivators
Convenience
Pleasure
Safety
Efficiency
Emissions

Enablers
Computing power
Materials

More electric vehicle
Presentation outline

• Chassis
 • Power steering
 • Suspension

• Engines and powertrain
 • Fuel injectors
 • Valvetrains
 • Throttle control and fuel pump
 • Turbo- and super-chargers
 • Starter-generators as pathway to hybrids

• Focus on energy conversion and systems
• Will not cover communications, algorithms, controls
Chassis electrification

Source: BMW
Steering

- Best (recent) success story in automotive electrification
 - Electric power steering becoming standard
 - Provides power on demand: Significant fuel economy benefit (4%)

- Issues:
 - Torque ripple
 - Fault tolerance
 - Cost

Source: Nexteer
Steering: Torque ripple

- Torque ripple felt by the driver on the steering wheel
 - Marketing issue (more than technical issue)
- Solution involved all aspects of motor and controller design and manufacturing:
 - Motor:
 - Matching of magnet back-emf with current excitation (magnet shape, etc)
 - Magnet skewing, pole/slot design, etc
 - Controller:
 - Sensor positioning and accuracy
 - Switching frequency, delays
 - Manufacturing:
 - Importance of Six Sigma methods to understand impact of build variations on performance

Source: Islam, et. al., IEEE T. IA, 2004
Steering: Fault tolerance

- Mechanical link to wheels kept, just in case
 - Last resort option

- Hardware solutions:
 - Minimize impact of fault (e.g., short circuit current)
 - Redundancy: Enough to be effective, not too much (FMEA)

- Software solutions:
 - Many faults have signatures in the current waveform
 - But, motor is always in dynamic situation
 - Alternatives to Fourier analysis needed
 - Wavelet, Wagnerville, windowed-Fourier…

Source: Rajagopalan, et. al., IEEE T. IA, 2006
Suspension: Background

- Suspension (spring and damper) filter road noise
 - Passenger comfort, body durability
- Adaptive filter better suited (semi-active suspension)
 - Active suspension expands control range, adds car vertical positioning

Source: BMW
Suspension: Magnetorheological fluids

- Magnetorheological fluids: Oil with iron particle in suspension
 - Magnetic field stiffen the oil
- Issues:
 - Material: Develop particles and oil to prevent sedimentation of the iron
 - Magnetics:
 - Optimization for linearity
 - Issue with hysteresis: Iron particle cannot be annealed, leading to large hysteresis
Suspension: Fully active (and electric)

- Electric machine:
 - As a motor, to drive the wheel up/down and position the body
 - As a generator, to absorb energy
- Linear machine (Bose, Un. of Eindhoven)
 - Simpler (no gear)
- Regular brushless machine with ballnut-ballscrew (GM)
 - Possibly smaller, cheaper motor (thanks to gear)
 - Need to compare force/torque per volume, response time, etc

Source: Gysen, et. al., IEEE T. IA 2009

Source: Hao & Namuduri, IEEE T. IA 2013
Engine electrification

Source: Bosch
Fuel injection: Background

- Fuel injection has moved closer and closer to combustion
 - Direct injection is increasingly the norm
- Issues: Fast, precise, repeatable motion
- Piezo actuators are great but large and more expensive

Source: Delphi
Solenoid fuel injectors

- Look simple, but:
 - Requirement of fast and repeatable motion has pushed technology
 - Solid parts (eddy currents)
 - Tiny motion (< fraction of a millimeter)
 - Fuel variety: Fossil, bio, natural gas
 - Recent trend of multiple injections per engine cycle
 - Repeatability means starting from same point – No lingering bounces, eddy currents

Source: Bosch

Fuel plumes

Source: Rivera and Kirwan, Delphi, 2014
Injectors: Modeling

- Fuel injector has driven modeling tools
 - First motion-compatible FEA models developed for this application
 - FEA solves for magnetic flux density over entire space
 - What matters is travel time, i.e. double integral of force, i.e. square of local flux density in airgap
 - FEA solves for global flux density in space
 - Simpler models: Depth models developed for eddy currents
 - Multi-physics to include magnetics, fluid dynamics, and thermal

\[F = \frac{1}{2\mu_0} B^2 S \]

Source: Lequesne, IEEE T. IA, 1990
Valvetrain: Background

- Valve train bring air into engine, takes burnt gases out
- Conventionally run by a camshaft at half engine speed
 - Valve opening is constant in lift (mm) and span (degrees)
 - Desirable to vary both as function of speed, load, etc
Solution 1: Direct electrical actuation

- Challenges:
 - Long travel (10mm in 3 ms)
 - Energy use
 - Seating velocity
 - Repeatability
 - Durability
 - Cost

Solved with 2-spring actuation:
Two springs work like a swing controlled by 2 coils

Worked in experimental cars (FEV, Valeo)

Unresolved 2-spring actuator

Motor actuated cam system

Source: Henry, SAE 2001-01-0241
Solution 2: Motor-controlled camshaft

- Motor (DC brushless) controls a mechanism that adjusts the camshaft
 - BMW (Vavetronics), Hitachi
 - Electric cam phaser shifts (phases) camshaft with respect to engine
 - Cam phasers standard now, but generally hydraulic
 - Electrical actuation broadens phase range, prepositions for cold starts
 - System uses harmonic drive (gear) and axial motor (for space)

Source: Jacque, et. al., MTZ Zeitschrift, 2012 (Delphi)
Turbo- and super-chargers: Background

- Basic concept: Pressurize intake air to expand engine output
- Turbocharger: Uses exhaust pressure to run a turbine
 - Uses waste energy, but suffers from lag
- Supercharger: Direct actuation of pressurizing turbine
 - Mechanical (belt driven): Cheaper, simple, but limited speed not ideal for turbine
 - Electrical

![Diagram of turbocharger/supercharger system]

DC bus → Inverter → Turbine → Pressurized air → High-speed motor → Air intake
Electric super-chargers

• Can go to very high speed (70 to 150 krpm for 1-2 kW)
 • Good for turbine
 • Can be done with motors, but a first for automotive
 • Issues of cost, controls, motor design from 12V
• First production-ready system (Valeo) uses switched reluctance motor
 • 70 krpm

Source: Valeo
Throttle control and fuel pump

- Throttle controls air intake (acceleration and load)
 - Done “by-wire” for 20-30 years
 - Brushtype motor for low cost

- Fuel pump electric for decades
 - Moving from brushtype to brushless thanks to cost downward trend
 - Note concentrated windings
 - Lower cost

Source: Delphi

Gerotor pump mechanism

Source: Continental
Starter-generator

- Starter motors are used for 30 seconds then “dead weight” during regular driving.
- Starting needs high torque at low speed (0 to 200 engine rpm), generation power over a wide engine speed range (800 to 6,000 rpm).
- Combination starting to occur (finally) due to:
 - More and more power demand (specs merging).
 - Idle-off (stop-start) feature (4% fuel economy benefit).
- Belt-driven system offer good packaging:
 - PM: Research level.
 - Induction: GM eAssist (no magnet, wide speed range).

Lundell motor

Source: Remy

Hairpin winding

Source: Bosch
Starter-generator: Segway to hybridization

- Starter-generator can also be used for:
 - Transient acceleration support, to shave off some of the engine peak loads
 - Regenerative braking
 - Limited by power rating (braking is a lot of energy in a short time)

- Starter-generator is a micro- or mini-hybrid
 - Growing to ”regular” hybrid is a matter of ratings, controls
 - Or, cost/benefit trade-off

- Engine hybridization will therefore appear gradually as costs come down and technology improves
 - Part of gradual electrification of the car systems
 - Not as a “disruptive technology”
Conclusions (1)

- Most automotive sub-systems experiencing some degree of electrification

- Still room to grow:
 - Turbo- and super-chargers
 - Brakes and suspension

- Issues of immediate interest:
 - High speed motors (superchargers)
 - Improved cooling and packaging
 - Motor / power electronics integration
 - SiC
 - Modeling (fuel injectors)
 - Clever electromechanical integration and new materials
Conclusions (2)

- Electrification enabled by computing power, materials, and paced by progress in cost reduction

- Starter-generators as “backdoor” entry to general hybridization
 - Hybridization logical next step of a much deeper and longer historical trend

- Voltage?
 - A lot is possible at 12V
 - 48V will come as “happy medium” between high-voltage hybrids and low-voltage systems
Thank you!

Bruno Le quesne - Consultant, E-Motors Consulting, LLC
bruno.lequesne@ieee.org
www.emotorseng.com
Bibliography

• And references therein