Automotive motors: Recent accomplishments and challenges ahead

Bruno Lequesne -
Consultant, E-Motors Consulting, LLC

bruno@emotorseng.com
www.emotorseng.com
Introduction

• Hybrids and EVs get a lot of press – Well deserved, these are tremendous technical achievements

• There is however a much deeper groundswell of electrification throughout the automobile
 • Going to the origin of the automobile
 • Pushing technology forward

Source: Conrad, AIEE, 1913
Automotive companies: At the forefront of motor technology?

- Example: Is integration of power electronics and motors cutting edge?

Enabling Technologies Thrust
Center for Power Electronics Systems / U. of Wisconsin, 2016

Lundell motor
1950s

Source: cpes.vtu.edu

Source: Bosch

Integrated rectifier / Diode bridge

Source: intechopen.com

October 2016, Slide 3
Presentation outline

• Power steering

• Accessory motors and concentrated windings

• High-speed motors

• Generators, starter-generators, and hybrid motors
Steering

- Best (recent) success story in automotive electrification
 - Electric power steering becoming standard
 - Provides power on demand: Significant fuel economy benefit (4%)

- Issues:
 - Torque ripple
 - Fault tolerance
 - Cost

Source: Nexteer
Steering: Torque ripple

- Torque ripple felt by the driver on the steering wheel
 - Marketing issue (more than technical issue)
- Solution involved all aspects of motor and controller design and manufacturing:
 - Initial approach based on sinusoidal waveforms, current and flux
 - Motor:
 - Matching of magnet back-emf with current excitation (magnet shape, etc)
 - Magnet skewing, pole/slot design, etc

Source: Islam, et. al., IEEE T. IA, 2005
Torque ripple; Effect of saturation

- Saturation increases harmonic content
 - Can be evaluated with finite elements

Source: Islam, et. al., IEEE T. IA, 2005
Torque ripple: Manufacturing issues

- Importance of Six Sigma methods to understand impact of build variations on performance
- Motor: Magnet misplacement, etc
- Controller:
 - Sensor positioning and accuracy
 - Switching frequency, delays

Source: Islam, et. al., IEEE T. IA, 2004
Source: Chen, et. al., IEEE T. IA, 2002
Steering: Fault tolerance

- Mechanical link to wheels kept, just in case
 - Last resort option

- Hardware solutions:
 - Minimize impact of fault (e.g., short circuit current)
 - Redundancy: Enough to be effective, not too much (FMEA)

- Software solutions:
 - Many faults have signatures in the current waveform
 - But, motor is always in dynamic situation
 - Alternatives to Fourier analysis needed
 - Wavelet, Wagnerville, windowed-Fourier

Source: Rajagopalan, et. al., IEEE T. IA, 2006
Accessory motors: Emergence of concentrated windings

Fuel pump
- Concentrated stator windings
- Rotor with permanent magnets
- Gerotor pump mechanism

Source: Continental

Speed gauge actuator

Source: MMT

Crankshaft starter-generator
- Mounted on flywheel (Honda 1999)

- Developed first for 1) low cost and 2) short packages
- Performance on par with distributed windings
Concentrated windings used on power steering

- Power steering, with the most stringent torque ripple spec, is going with concentrated windings!
- Proper combination of slot/poles, and shaping of magnets and slots critical

1st generation
- Distributed windings
- Ring magnet

2nd generation
- Concentrated windings
- Ring magnet

3rd generation
- Concentrated windings
- Segmented, shaped magnets

Source: Nidec
High-speed motors for supercharging

- Basic concept: Pressurize intake air to expand engine output
- Turbocharger: Uses exhaust pressure to run a turbine
 - Uses waste energy, but suffers from lag
- Supercharger: Direct actuation of pressurizing turbine
 - Mechanical (belt driven): Cheaper, simple, but limited speed not ideal for turbine
 - Electrical
Electric super-chargers

- Can go to very high speed (70 to 150 krpm for 1-2 kW)
 - Good for turbine
 - Can be done with motors, but a first for automotive
 - Issues of cost, controls, motor design from 12V
- First production-ready system (Valeo) uses switched reluctance motor
 - 70 krpm

Source: Valeo
Generator: Steady improvements

- Lundell (claw pole) AC generator replaced DC generator in 50s
 - Low cost, hard to beat! But, low efficiency (50%)
- Improved with:
 - Magnets between claws
 - Water cooled
 - Active rectifier
 - Lower losses (resistive drop better than diode voltage drop)
 - Control of phase angle

Source: Radomski (GM), US 4,959,577

Source: Bosch

Source: Liang, Miller, Xu (Ford), T. IA, 1999
Starter-generator

- Starter motors are used for 30 seconds then “dead weight” during regular driving.

- Starting needs high torque at low speed (0 to 200 engine rpm), generation power over a wide engine speed range (800 to 6,000 rpm).

- Combination starting to occur (finally) due to:
 - More and more power demand (specs merging)
 - Idle-off (stop-start) feature (4% fuel economy benefit)

- Belt-driven system offer good packaging
 - PM: Research level
 - Induction: GM eAssist (no magnet, wide speed range)
 - Lundell: Toyota Lexus 2003, GM Saturn Vue 2005 (lowest cost solution)

Source: automobilemag.com
Hybrid/EV motors: New technologies

- Drive cycle optimization
- Winding
 - Need for higher fill factors
- Magnet supply issue
- Higher speeds
 - Materials and losses
- Torque ripple and noise
- Integration of magnetic and thermal models

PM motor
Toyota hybrid (Camry 2007)

Source: ORNL

Induction motor
Tesla electric

Source: insideevs.com
Cycle optimization

- Importance of efficiency over actual cycles came to the fore in the early stages of hybrid and EV development
 - Top torque and speed are needed for emergency, passing, etc, but rarely used
 - Some softwares now allow automatic calculations of desired/standard operating points

Efficiency maps
Dots indicate actual operating points based on standard drive cycles

Source: Burwell, et. al, Tokyo 2013 (Int. Copper Association)
Bar winding

- Introduced on GM 2006 Tahoe (motor by then Remy)
 - Advantage of bars:
 - Higher fill factor (60%)
 - Shorter end turns
 - Easier cooling
 - Easier manufacturing
 - If inserted from end (hairpin), small slot opening
 - Advantage of round wires:
 - Can have more turns/slot (more flexibility in design)
 - Lower high frequency/speed losses

Source: Rahman, et. al, IEEE TIA 2014

Source: Borg-Warner

End bundle
Minimal space between bars
Weld End

Source: Jurkovic, et. al, IEEE TIA 2015

Hairpin winding

Source: Borg-Warner
Bar winding: High speed

- Proximity losses in bar windings need careful consideration
 - AC resistance can be 10 times the DC resistance!
 - Zhang and Jahns, IEMDC 2015

Traction motor, 4-bar winding

Current density versus position within slot

900 Hz

12,000 Hz

Resistance versus frequency

Base: DC

Source: Zhang and Jahns, IEMDC 2015
Magnet supply issue

- Rare-earth prices shot up sky high some 5 years ago
 - Speculation over, but demand still growing
 - Issue especially with “heavy rare earth” such as Dysprosium
- Research in new materials
- Strong argument for induction motors
- Dysprosium critical to prevent demagnetization under load at high temperature
 - Or is it? New grades with “boundary diffusion process” can circumvent problem

<table>
<thead>
<tr>
<th>Year</th>
<th>Dysprosium ($/kg)</th>
<th>Neodymium ($/kg)</th>
<th>Copper ($/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$480</td>
<td>$2,000</td>
<td>$7</td>
</tr>
<tr>
<td>2005</td>
<td>$80</td>
<td>$1,000</td>
<td>$7</td>
</tr>
<tr>
<td>2008</td>
<td>$80</td>
<td>$80</td>
<td>$7</td>
</tr>
<tr>
<td>2011</td>
<td>$480</td>
<td>$80</td>
<td>$7</td>
</tr>
<tr>
<td>2013</td>
<td>$480</td>
<td>$80</td>
<td>$7</td>
</tr>
</tbody>
</table>

Source: world.honda.com, July 2016

Honda Freed first hybrid vehicle with magnet free of heavy rare earth (Honda news, July 2016)

Source: metal-pages.com
Torque ripple and noise

- Electric machine #1 noise/vibration producer under the hood in EVs
 - Even for hybrids, engines are quieter, and motors have annoying higher-frequency pitch
- Solutions:
 - Magnet slot shape
 - Asymmetric North and South poles
 - Uneven rotor surface to cancel specific harmonics

Source: Jurkovic, et. al., IEEE ECCE 2016
Conclusions

• Automotive applications have driven many innovations, will continue to do so

• Challenging environment (temperature, cost) with a variety of applications
 • Each with own needs (low torque ripple, efficiency, etc)

• Future development in:
 • Higher speed, from hybrid motor reaching upward of 15,000 rpm to superchargers at 70,000 rpm
 • Loss reduction at high speed, particularly in bar windings
 • Reduced use of heavy rare-earth
 • Integration of magnetic and thermal models for robust optimization
 • Noise reduction
Efficiency optimization
Source: Burwell, et. al, Tokyo 2013

Electric power steering
Source: Nexteer

Electric supercharger
Source: Valeo

Hairpin winding
Source: Borg-Warner

Thank you!

Bruno Lequesne - Consultant, E-Motors Consulting, LLC
bruno@emotorseng.com
www.emotorseng.com